Midterm Exam - Function Spaces B. Math III

15 September, 2023
(i) Duration of the exam is 3 hours.
(ii) The maximum number of points you can score in the exam is 100 (total $=110)$.
(iii) You are not allowed to consult any notes or external sources for the exam.

Name: \qquad
Roll Number: \qquad

1. (20 points) Show that $A \subseteq \mathbb{R}^{n}$ is convex, if and only if $\alpha A+\beta A=(\alpha+\beta) A$ holds, for all $\alpha, \beta \geq 0$.

Total for Question 1: 20
2. For $t \geq 0$, let

$$
A(t):=\left(\int_{0}^{t} e^{-x^{2}} d x\right)^{2}, B(t):=\int_{0}^{1} \frac{e^{-t^{2}\left(1+x^{2}\right)}}{1+x^{2}} d x
$$

(a) (10 points) Prove that $A(t)+B(t)=\frac{\pi}{4}$ for all $t \geq 0$.
(b) (10 points) Prove that $e^{-x^{2}} \in L^{1}\left(\mathbb{R}_{\geq 0} ; d x\right)$ and $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.
(N.B.: Carefully justify each step, such as existence of integral, interchange of limits and integrals, etc.)

Total for Question 2: 20
3. (20 points) For $p>0$, show that $\frac{x^{p-1}}{1-x} \log \frac{1}{x} \in L^{1}([0,1] ; d x)$ and

$$
\int_{0}^{1} \frac{x^{p-1}}{1-x} \log \frac{1}{x} d x=\sum_{n=0}^{\infty} \frac{1}{(n+p)^{2}}
$$

Total for Question 3: 20
4. (20 points) Let $\left\{r_{1}, \ldots, r_{n}, \ldots\right\}$ be an enumeration of the set of rational numbers in $[0,1]$ and let $I_{n}:=\left[r_{n}-\frac{1}{4^{n}} \cdot r_{n}+\frac{1}{4^{n}}\right] \cap[0,1]$. Let $f(x)=1$ if $x \in I_{n}$ for some n, and let $f(x)=0$ otherwise. Show that f is an upper function whereas $-f$ is not an upper function.

Total for Question 4: 20
5. (20 points) Prove that the function,

$$
\frac{1}{1+x^{2} \sin ^{2} x},
$$

is not Lebesgue-integrable on $[1, \infty)$.
Total for Question 5: 20
6. (10 points) Show that $\log \frac{1}{1-x} \in L^{1}([0,1] ; d x)$ and with justification, compute the following integral:

$$
\int_{0}^{1} \log \frac{1}{1-x} d x
$$

Total for Question 6: 10

